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Abstract In the 1920s, Ronald Fisher developed the

theory behind the p value and Jerzy Neyman and Egon

Pearson developed the theory of hypothesis testing. These

distinct theories have provided researchers important

quantitative tools to confirm or refute their hypotheses. The

p value is the probability to obtain an effect equal to or

more extreme than the one observed presuming the null

hypothesis of no effect is true; it gives researchers a

measure of the strength of evidence against the null

hypothesis. As commonly used, investigators will select a

threshold p value below which they will reject the null

hypothesis. The theory of hypothesis testing allows

researchers to reject a null hypothesis in favor of an

alternative hypothesis of some effect. As commonly used,

investigators choose Type I error (rejecting the null

hypothesis when it is true) and Type II error (accepting the

null hypothesis when it is false) levels and determine some

critical region. If the test statistic falls into that critical

region, the null hypothesis is rejected in favor of the

alternative hypothesis. Despite similarities between the

two, the p value and the theory of hypothesis testing are

different theories that often are misunderstood and con-

fused, leading researchers to improper conclusions.

Perhaps the most common misconception is to consider the

p value as the probability that the null hypothesis is true

rather than the probability of obtaining the difference

observed, or one that is more extreme, considering the null

is true. Another concern is the risk that an important pro-

portion of statistically significant results are falsely

significant. Researchers should have a minimum under-

standing of these two theories so that they are better able to

plan, conduct, interpret, and report scientific experiments.

Introduction

‘‘We are inclined to think that as far as a particular

hypothesis is concerned, no test based upon a theory of

probability can by itself provide any valuable evidence

of the truth or falsehood of a hypothesis’’ [15].

Since their introduction in the 1920s, the p value and the

theory of hypothesis testing have permeated the scientific

community and medical research almost completely. These

theories allow a researcher to address a certain hypothesis

such as the superiority of one treatment over another or the

association between a characteristic and an outcome. In

these cases, researchers frequently wish to disprove the

well-known null hypothesis, that is, the absence of differ-

ence between treatments or the absence of association of a

characteristic with outcome. Although statistically the null

hypothesis does not necessarily relate to no effect or to no

association, the presumption that it does relate to no effect

or association frequently is made in medical research and
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the one we will consider here. The introduction of these

theories in scientific reasoning has provided important

quantitative tools for researchers to plan studies, report

findings, compare results, and even make decisions.

However, there is increasing concern that these tools are

not properly used [9, 10, 13, 20].

The p value is attributed to Ronald Fisher and represents

the probability of obtaining an effect equal to or more

extreme than the one observed considering the null

hypothesis is true [3]. The lower the p value, the more

unlikely the null hypothesis is, and at some point of low

probability, the null hypothesis is preferably rejected. The

p value thus provides a quantitative strength of evidence

against the null hypothesis stated.

The theory of hypothesis testing formulated by Jerzy

Neyman and Egon Pearson [15] was that regardless of the

results of an experiment, one could never be absolutely

certain whether a particular treatment was superior to

another. However, they proposed one could limit the risks

of concluding a difference when there is none (Type I error)

or concluding there is no difference when there is one (Type

II error) over numerous experiments to prespecified chosen

levels denoted a and b, respectively. The theory of

hypothesis testing offers a rule of behavior that, in the long

run, ensures followers they would not be wrong often.

Despite simple formulations, both theories frequently are

misunderstood and misconceptions have emerged in the

scientific community. Therefore, researchers should have a

minimum understanding of the p value and hypothesis

testing to manipulate these tools adequately and avoid

misinterpretation and errors in judgment. In this article, we

present the basic statistics behind the p value and hypothesis

testing, with historical perspectives, common misunder-

standings, and examples of use for each theory. Finally, we

discuss the implications of these issues for clinical research.

The p Value

The p value is the probability of obtaining an effect equal

to or more extreme than the one observed considering the

null hypothesis is true. This effect can be a difference in a

measurement between two groups or any measure of

association between two variables. Although the p value

was introduced by Karl Pearson in 1900 with his chi square

test [17], it was the Englishman Sir Ronald A. Fisher,

considered by many as the father of modern statistics, who

in 1925 first gave the means to calculate the p value in a

wide variety of situations [3].

Fisher’s theory may be presented as follows. Let us

consider some hypothesis, namely the null hypothesis, of no

association between a characteristic and an outcome. For

any magnitude of the association observed after an

experiment is conducted, we can compute a test statistic that

measures the difference between what is observed and the

null hypothesis. This test statistic may be converted to a

probability, namely the p value, using the probability dis-

tribution of the test statistic under the null hypothesis. For

instance, depending on the situation, the test statistic may

follow a v2 distribution (chi square test statistic) or a Stu-

dent’s t distribution. Its graphically famous form is the bell-

shaped curve of the probability distribution function of a t

test statistic (Fig. 1A). The null hypothesis is said to be

disproven if the effect observed is so important, and con-

sequently the p value is so low, that ‘‘either an exceptionally

rare chance has occurred or the theory is not true’’ [6].

Fisher, who was an applied researcher, strongly believed the

p value was solely an objective aid to assess the plausibility

of a hypothesis and ultimately the conclusion of differences

or associations to be drawn remained to the scientist who

had all the available facts at hand. Although he supported a

p value of 0.05 or less as indicating evidence against the

null, he also considered other more stringent cutoffs. In his

words ‘‘If p is between 0.1 and 0.9 there is certainly no

reason to suspect the hypothesis tested. If it is below 0.02 it

is strongly indicated that the hypothesis fails to account for

the whole of the facts. We shall not often be astray if we

draw a conventional line at 0.05…’’ [4].

For instance, say a researcher wants to test the associ-

ation between the existence of a radiolucent line in Zone 1

on the postoperative radiograph in cemented cups and the

risk of acetabular loosening. He or she can use a score test

in a Cox regression model, after adjusting for other

potentially important confounding variables. The null

hypothesis that he or she implicitly wants to disprove is

that a radiolucent line in Zone 1 has no effect on acetabular

loosening. The researcher’s hypothetical study shows an

increased occurrence of acetabular loosening when a

radiolucent line in Zone 1 exists on the postoperative

radiograph and the p value computed using the score test is

0.02. Consequently, the researcher concludes either a rare

event has occurred or the null hypothesis of no association

is not true. Similarly, the p value may be used to test the

null hypothesis of no difference between two or more

treatments. The lower the p value, the more likely is the

difference between treatments.

The Neyman-Pearson Theory of Hypothesis Testing

We owe the theory of hypothesis testing as we use it today to

the Polish mathematician Jerzy Neyman and American

statistician Egon Pearson (the son of Karl Pearson). Neyman

and Pearson [15] thought one could not consider a null

hypothesis unless one could conceive at least one plausible

alternative hypothesis.
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Their theory may be presented in a few words this way.

Consider a null hypothesis H0 of equal improvement for

patients under Treatment A or B and an alternative

hypothesis H1 of a difference in improvement of some

relevant size d between the two treatments. Researchers

may make two types of incorrect decisions at the end of a

trial: they may consider the null hypothesis false when it is

true (a Type I error) or consider the null true when it is in

fact false (Type II error) (Table 1). Neyman and Pearson

proposed, if we set the risks we are willing to accept for

Type I errors, say a (ie, the probability of a Type I error),

and Type II errors, say b (ie, the probability of a Type II

error), then, ‘‘without hoping to know whether each sepa-

rate hypothesis is true or false, we may search for rules to

govern our behavior with regard to them, in following

which we insure that, in the long run of experience, we

shall not often be wrong.’’ These Types I and II error rates
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Fig. 1A–B These graphs show the results of three trials (t1, t2, and t3)

comparing the 1-month HHS after miniincision or standard incision

hip arthroplasty under the theory of (A) Fisher and (B) Neyman and

Pearson. For these trials, a = 5% and b = 10%. Trial 1 yields a

standardized difference between the groups of 0.5 in favor of the

standard incision; Trials 2 and 3 yield standardized differences of 1.8

and 2.05, respectively. The corresponding p values are 0.62, 0.074,

and 0.042 for Trials 1, 2, and 3, respectively. (A) Fisher’s p value for

Trial 2 is represented by the gray area under the null hypothesis; it

corresponds to the probability of observing a standardized difference

of 1.8 (Point 2) or more extreme differences (gray area on both sides)

considering the null hypothesis is true. According to Fisher, Trials 2

and 3 provide fair evidence against the null hypothesis of no

difference between treatments; the decision to reject the null

hypothesis of no difference in these cases will depend on other

important information (previous data, etc). Trial 1 provides poor

evidence against the null as the difference observed, or one more

extreme, had 62% probability of resulting from chance alone if the

treatments were equal. (B) Under the Neyman and Pearson theory, the

Types I (a = 0.05, gray area under the null hypothesis) and II

(b = 0.1, shaded area under the alternative hypothesis) error rates and

the difference to be detected (d = 10) define a critical region for the

test statistic (|t test| [ 1.97). If the test statistic (standardized

difference here) falls into that critical region, the null hypothesis is

rejected; this is the case for Trial 3. Trials 1 and 2 do not fall into the

critical region and the null is not rejected. According to Neyman and

Pearson’s theory, the null hypothesis of no difference between

treatments is rejected after Trial 3 only. The distributions depicted are

the probability distribution functions of the t test with 168 degrees of

freedom.

Table 1. Types I and II errors according to the theory of hypothesis tests

Study findings Truth

Null hypothesis

is true

Null hypothesis

is false

Null hypothesis

is not rejected

True negative Type II error (b)

(false negative)

Null hypothesis

is rejected

Type I error (a)

(false positive)

True positive

a and b represent the probability of Types I and II errors, respectively.
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allow defining a critical region for the test statistic used.

For instance for a set at 5%, the corresponding critical

regions would be v2 [ 3.84 for the chi square statistic or

|t168df| [ 1.97 for Student’s t test with 168 degrees of

freedom (Fig. 1B) (the reader need not know the details of

these computations to grasp the point). If, for example, the

comparison of the mean improvement under Treatments A

and B falls into that critical region, then the null hypothesis

is rejected in favor of the alternative; otherwise, the null

hypothesis is accepted. In the case of group comparisons,

the test statistic represents a measure of the likelihood that

the groups compared are issued from the same population

(null hypothesis): the more groups differ, the higher the test

statistic and at some point the null hypothesis is rejected

and the alternative is accepted. Although Neyman and

Pearson did not view the 5% level for Type I error as a

binding threshold, this level has permeated the scientific

community. For the Type II error rate, 0.1 or 0.2 often is

chosen and corresponds to powers (defined as 1 � b) of

90% and 80%, respectively.

For instance, say a surgeon wants to compare the

1-month Harris hip score (HHS) after miniincision and

standard incision hip arthroplasty. With the help of a

statistician, he plans a randomized controlled trial and

considers the null hypothesis H0 of no difference between

the standard treatment and experimental treatment (mi-

niincision) and the alternative hypothesis H1 of a difference

d of more than 10 points on the HHS, which he considers is

the minimal clinically important difference. Because the

statistician is performing many statistical tests across dif-

ferent studies all day long, she has grown very concerned

about false positives and, as a general rule, she is not willing

to accept more than 5% Type I error rate, that is, if no

difference exists between treatments, there is only a 5%

chance to conclude a difference. However, the surgeon is

willing to give the best chances to detect that difference if it

exists and chooses a Type II error of 10%, ie, a power of

90%; therefore, if a difference of 10 points exists between

treatments, there is an acceptable 10% chance that the trial

will not detect it. Let us presume the expected 1-month

HHS after standard incision hip arthroplasty is 70 and the

expected SD in both groups is 20. The required sample size

therefore is 85 patients per group (two-sample t test).The

critical region to reject the null hypothesis therefore is 1.97

(Student’s t test with 168 degrees of freedom). Therefore, if

at the end of the trial Student’s t test yields a statistic of 1.97

or greater, the null hypothesis will be rejected; otherwise the

null hypothesis will not be rejected and the trial will con-

clude no difference between the experimental and standard

treatment groups. Although the Neyman-Pearson theory of

hypothesis testing usually is used for group comparisons, it

also may be used for other purposes such as to test the

association of a variable and an outcome.

The Difference between Fisher’s P Value

and Neyman-Pearson’s Hypothesis Testing

Despite the fiery opposition these two schools of thought

have concentrated against each other for more than

70 years, the two approaches nowadays are embedded in a

single exercise that often leads to misuse of the original

approaches by naı̈ve researchers and sometimes even

statisticians (Table 2) [13]. Fisher’s significance testing

with the p value is a practical approach whose statistical

properties are derived from a hypothetical infinite popula-

tion and which applies to any single experiment. Neyman

and Pearson’s theory of hypothesis testing is a more

mathematical view with statistical properties derived from

the long-run frequency of experiments and does not pro-

vide by itself evidence of the truth or falsehood of a

particular hypothesis. The confusion between approaches

comes from the fact that the critical region of Neyman-

Pearson theory can be defined in terms of p value. For

instance, the critical regions defined by thresholds at

± 1.96 for the normal distribution, 3.84 for the chi square

test at 1 degree of freedom, and ± 1.97 for a t test at 168

degrees of freedom all correspond to setting a threshold at

0.05 for the p value. The p value is found more practical

because it represents a single probability across the dif-

ferent distributions of numerous test statistics and usually

the value of the test statistic is omitted and only the p value

is reported.

The difference between approaches may be more easily

understandable through a hypothetical example. After a

trial comparing an experimental Treatment A with a stan-

dard Treatment B is conducted, a surgeon has to decide

whether Treatment A is or is not superior to Treatment B.

Following Fisher’s theory, the surgeon weighs issues such

Table 2. Comparison of Fisher’s p value and Neyman-Pearson’s

hypothesis testing

Fisher’s p value Hypothesis testing

Ronald Fisher Jerzy Neyman and Egon

Pearson

Significance test Hypothesis test

p Value a

The p value is a measure of the

evidence against the null

hypothesis

a and b levels provide rules to

limit the proportion of errors

Computed a posteriori from the

data observed

Determined a priori at some

specified level

Applies to any single experiment Applies in the long run through

the repetition of experiments

Subjective decision Objective behavior

Evidential, ie, based on the

evidence observed

Nonevidential, ie, based on a

rule of behavior
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as relevant in vitro tests, the design of the trial, previous

results comparing treatments, etc, and the p value of the

comparison to eventually reach a conclusion. In such cases,

p values of 0.052 and 0.047 likely would be similarly

weighted in making the conclusion whereas p values of

0.047 and 0.0001 probably would have differing weights.

In contrast, statisticians have to give their opinion regard-

ing an enormous quantity of new drugs and medical

devices during their life. They cannot be concerned

whether each new particular treatment tested is superior to

the standard one because they know the evidence can never

be certain. However, they know following Neyman and

Pearson’s theory they can control the overall proportion of

errors, either Type I or II errors (Table 1), they make

over their entire career. By setting a at, say, 5% and power

(1 – b) at 90%, at the end of their career, they know in 5%

cases they will have concluded the experimental treatment

was superior to the standard when it was not and in 10%

cases they will have concluded the experimental treatment

was not different from the standard treatment although it

was. In that case, very close p values such as 0.047 and

0.052, will lead to rather dramatically opposite actions. In

the first case, the treatment studied will be considered

superior and used, when in the second case the treatment

will be rejected for inefficacy despite very close evidence

observed from the two experiments (in a Fisherian point of

view).

Misconceptions When Considering Statistical Results

First, the most common and certainly most serious error

made is to consider the p value as the probability that the

null hypothesis is true. For instance, in the above-men-

tioned example to illustrate Fisher’s theory, which yielded

a p value of 0.02, one should not conclude the data show

there is a 2% chance of no association between the

existence of a radiolucent line in Zone 1 on the postop-

erative radiograph in cemented cups and the risk of

acetabular loosening. The p value is not the probability

of the null hypothesis being true; it is the probability of

observing these data, or more extreme data, if the null is

true. The p value is computed on the basis that the null

hypothesis is true and therefore it cannot give any prob-

ability of it being more or less true. The proper

interpretation in the example should be: considering no

association exists between a radiolucent line in Zone 1

and the risk of acetabular loosening (the null hypothesis),

there was only a 2% chance to observe the results of the

study (or more extreme results).

Second, there is also a false impression that if trials are

conducted with a controlled Type I error, say 5%, and

adequate power, say 80%, then significant results almost

always are corresponding to a true difference between the

treatments compared. This is not the case, however.

Imagine we test 1000 null hypotheses of no difference

between experimental and control treatments. There is

some evidence that the null only rarely is false, namely that

only rarely the treatment under study is effective (either

superior to a placebo or to the usual treatment) or that a

factor under observation has some prognostic value [12, 19,

20]. Say that 10% of these 1000 null hypotheses are false

and 90% are true [20]. Now if we conduct the tests at the

aforementioned levels of a = 5% and power = 80%, 36%

of significant p values will not report true differences

between treatments (Fig. 2, Scenario 1, 64% true-positive

and 36% false-positive significant results; Fig. 3, Point A).

Moreover, in certain contexts, the power of most studies

does not exceed 50% [1, 7]; in that case, almost 1
.
2 of

significant p values would not report true differences [20]

(Fig. 3, Point B).

Implications for Research

Fisher, who designed studies for agricultural field experi-

ments, insisted ‘‘a scientific fact should be regarded as

experimentally established only if a properly designed

experiment rarely fails to give this level of significance’’

[5]. There are three issues that a researcher should consider

when conducting, or when assessing the report of, a study

(Table 3).

First, the relevance of the hypothesis tested is paramount

to the solidity of the conclusion inferred. The proportion of

false null hypotheses tested has a strong effect on the

predictive value of significant results. For instance, say we

shift from a presumed 10% of null hypotheses tested being

false to a reasonable 33% (ie, from 10% of treatments

tested effective to 1
.
3 of treatments tested effective), then

the positive predictive value of significant results improves

from 64% to 89% (Fig. 3, Point C). Just as a building

cannot be expected to have more resistance to environ-

mental challenges than its own foundation, a study

nonetheless will fail regardless of its design, materials, and

statistical analysis if the hypothesis tested is not sound. The

danger of testing irrelevant or trivial hypotheses is that,

owing to chance only, a small proportion of them eventu-

ally will wrongly reject the null and lead to the conclusion

that Treatment A is superior to Treatment B or that a

variable is associated with an outcome when it is not.

Given that positive results are more likely to be reported

than negative ones, a misleading impression may arise

from the literature that a given treatment is effective when

it is not and it may take numerous studies and a long time

to invalidate this incorrect evidence. The requirement to

register trials before the first patient is included may prove
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to be an important means to deter this issue. For instance,

by 1981, 246 factors had been reported [12] as potentially

predictive of cardiovascular disease, with many having

little or no relevance at all, such as certain fingerprints

patterns, slow beard growth, decreased sense of enjoyment,

garlic consumption, etc. More than 25 years later, only the

following few are considered clinically relevant in assess-

ing individual risk: age, gender, smoking status, systolic

blood pressure, ratio of total cholesterol to high-density

lipoprotein, body mass index, family history of coronary

heart disease in first-degree relatives younger than

60 years, area measure of deprivation, and existing treat-

ment with antihypertensive agent [19]. Therefore it is of

prime importance that researchers provide the a priori

scientific background for testing a hypothesis at the time of

planning the study, and when reporting the findings, so that

peers may adequately assess the relevance of the research.

For instance, with respect to the first example given, we

may hypothesize that the presence of a radiolucent line

observed in Zone 1 on the postoperative radiograph is a

sign of a gap between cement and bone that will favor

micromotion and facilitate the passage of polyethylene

wear particles, both of which will favor eventual bone

resorption and loosening [16, 18]. An important endorse-

ment exists when other studies also have reported the

association [8, 11, 14].

Second, it is essential to plan and conduct studies that

limit the biases so that the outcome rightfully may be

attributed to the effect under observation of the study. The

difference observed at the end of an experiment between

two treatments is the sum of the effect of chance, of the

treatment or characteristic studied, and of other con-

founding factors or biases. Therefore, it is essential to

minimize the effect of confounding factors by adequately

planning and conducting the study so we know the dif-

ference observed can be inferred to be the treatment

studied, considering we are willing to reject the effect of

chance (when the p value or equivalently the test statistic

engages us to do so). Randomization, when adequate, for

example, when comparing the 1-month HHS after mi-

niincision and standard incision hip arthroplasty, is the

preferred experimental design to control on average known

and unknown confounding factors. The same principles

should apply to other experimental designs. For instance,

owing to the rare and late occurrence of certain events, a

retrospective study rather than a prospective study is

preferable to judge the association between the existence of

a radiolucent line in Zone 1 on the postoperative radio-

graph in cemented cups and the risk of acetabular

loosening. Nonetheless researchers should ensure there is

no systematic difference regarding all known confounding

factors between patients who have a radiolucent line in

Fig. 2 The flowchart shows the classification tree for 1000 theoret-

ical null hypotheses with two different scenarios considering 10%

false null hypotheses. Scenario 1 has a Type I error rate of 5% and a

Type II error rate of 20% (power = 80%); Scenario 2 has a Type I

error rate of 1% and a Type II error rate of 10% (power = 90%). The

first node (A) separates the 900 true null hypotheses (no effect of

treatment) from the 100 false null hypotheses (effect of treatment).

For Scenario 1, the second node left (B) separates the 900 true null

hypotheses (no treatment effect) at the 5% level: 855 tests are not

significant (true-negative [TN] results) and 45 tests are falsely

significant (false-positive [FP] results). The second node right (C)

separates the 100 false null hypotheses (effect of treatment) at the

20% level (power = 80%): 20 tests are falsely not significant (false-

negative [FN] results) and 80 tests are significant (true-positive [TP]

results). The corresponding positive predictive value [TP/(TP + FP)]

is 64%. The figures in parentheses at the second nodes right and left

and at the bottom show the results for Scenario 2. The positive

predictive value of significant results for Scenario 2 is 91%.
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Zone 1 and those who do not. For instance, they should

retrieve both groups over the same period of time and the

acetabular components used and patients under study

should be the same in both groups. If the types of acetab-

ular components differ markedly between groups, the

researcher will not be able to say whether the difference

observed in aseptic loosening between groups is attribut-

able to the existence of a radiolucent line in Zone 1 or to

differences in design between acetabular components.

Last, choosing adequate levels of Type I and Type II

errors, or alternatively the level of significance for the p

value, may improve the reliance we can have in purported

significant results (Figs. 2, 3). Decreasing the a level will

proportionally decrease the number of false-positive find-

ings and subsequently improve the positive predictive

value of significant results. Increasing the power of studies

will correspondingly increase the number of true-positive

findings and also improve the positive predictive value of

significant results. For example, if we shift from a Type I

error rate of 5% and power of 80% to a Type I error rate of

1% and power of 90%, the positive predictive value of a

significant result increases from 64% to 91% (Fig. 2,

Scenario 2; Fig. 3, Point D). Sample size can be used as a

lever to control for Types I and II error levels [2]. How-

ever, a strong statistical association, p values, or test

statistics never imply any causal effect. The causal effect is

built on, study after study, little by little. Therefore, rep-

lication of the experiment by others is crucial before

accepting any hypothesis. To replicate an experiment, the

methods used must be described sufficiently so that the

study can be replicated by other informed investigators.

The p value and the theory of hypothesis testing are

useful tools that help doctors conduct research. They are

helpful for planning an experiment, interpreting the results

observed, and reporting findings to peers. However, it is

paramount researchers understand precisely what these

tools mean and do not mean so that eventually they will not

be blinded by the irrelevance of some statistical value in

front of important medical reasoning.
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Fig. 3 This graph shows the effect of the Types I and II error rates

and the proportion of false null hypotheses (true effect of treatment)

on the positive predictive value of significant results. Three different

levels of Types I and II error rates are depicted: a = 5% and

b = 20% (power = 80%), a = 5% and b = 50% (power = 50%),

and a = 1% and b = 10% (power = 90%). It can be seen, the

higher the proportion of false null hypotheses tested, the better is

the positive predictive value of significant results. Point A

corresponds to a standard a = 5%, b = 20% (power = 80%), and

10% of false null hypotheses tested. The positive predictive value of

a significant result is 64% (also see Fig. 2). Point B corresponds to

the suspected reality a = 5%, b = 50% (power = 50%), and 10%

of false null hypotheses tested. The positive predictive value of a

significant result decreases to 53%. Point C corresponds to a = 5%,

b = 20% (power = 80%), and 33% of false null hypotheses tested.

The positive predictive value of a significant result increases to

89%. Finally, Point D corresponds to a = 1%, b = 10% (power =

90%), and 10% of false null hypotheses tested. The positive

predictive value of a significant result increases to 91%. At the

extreme, if all null hypotheses tested are true (no effect of

treatment), regardless of a and b, the positive predictive value of a

significant result is 0.

Table 3. Implications for research

Step Implication

Hypothesis giving rise

to the research

The hypothesis tested should be relevant as determined by previous experiments, logical biologic

or mechanical effect, etc

Planning a, power, and sample size should be determined a priori.

Design and conduction Study design should limit the biases so that differences observed may be attributable to the treatment

or characteristic under scrutiny

Report Methods should be detailed sufficiently so that an informed investigator may reproduce the research;

discussion should report internal and external validity limits of the study

Confrontation Study results should be confronted with previous and future results before the hypothesis tested is

accepted or rejected
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